Bridge protection with the Weigh In Motion (WIM) system from Kistler

How to survey and safeguard a sensitive load-bearing structure above a section of railway line? This was the challenge facing REVOTEC, the Vienna-based bridge monitoring specialist. The solution: KiTraffic Statistics, the Weigh In Motion (WIM) system from Kistler. Thanks to reliable measurements of real traffic loads, local authorities can prosecute offenders and prevent violations – even if the legal basis is uncertain.

Making bridges safe and maintaining them correctly presents a major challenge in many countries around the world – especially in Germany, Austria and Switzerland (the "DACH" region). Many of these structures are getting on in years: they need to be repaired – or at least examined and monitored – so their remaining lifetime can be determined as accurately as possible. And the worst-case scenario of a collapse must be prevented at all costs. Bridge structures come in many different sizes, and they vary greatly in terms of materials and design. But almost all of them can be monitored efficiently with Weigh In Motion systems that determine real loads and help to prevent further damage.

Founded in 2014, REVOTEC zt gmbh is a young civil engineering practice that has close ties with the Technical University of Vienna. As an expert in structural dynamics, REVOTEC numbers among Austria's leading providers of civil engineering services, and it collaborates with major infrastructure companies throughout the country in the role of system integrator. REVOTEC specializes in bridge monitoring, with a particular focus on railway bridges. Projects frequently involve fatigue assessments and vibration tests, for example on steel supporting structures that are excited artificially with electromechanical shakers. REVOTEC also provides support for industrial companies with machine foundations, vibration protection and isolation, and in many other areas.

Axle load data: the ideal complement to measurements of the supporting structure

Michael Vospernig, one of REVOTEC's two founders, is the company's "Secretary of the Interior": his main responsibilities include internal procedures and project management as well as the entire development process for automatic bridge monitoring systems, ranging from architecture and measurement technology through to software.

We're currently working on a project for Austrian Federal Railways (ÖBB) where – for the first time – we're using Weigh In Motion by Kistler to monitor a sensitive road bridge over a railway line and determine the real loads. And the results are successful!"

Michael Vospernig, Co-Founder of REVOTEC


This small bridge is part of the access road to a village located almost in the dead center of Austria. But because there is a large sawmill nearby, the bridge is crossed every day by numbers of trucks carrying heavy loads of timber. "When the project began in January 2020, there was already some visible damage to the bridge with several cracks in the supporting structure. On behalf of ÖBB, we installed the strain gauges for measurements of the supporting structure in March. Then in May, we added the axle load measurement with the system from Kistler – and that installation was completed within one day, partly because the weather was warm but also thanks to the good instruction manual."

It comes as no surprise that the bridge monitoring measurements with KiTraffic Statistics show many trucks and tractors with trailers exceeding the overall weight limit of 40 tonnes – sometimes by as much as five or ten tonnes. And it emerged that even vehicles weighing less than 40 tonnes quite often had axle loads of more than 12.5 tonnes, which is the maximum permitted in Austria. "Thanks to the data acquired, the authorities were able to penalize vehicles weighing over 44 tonnes so as to prevent any further overloading of the bridge – although that couldn't be achieved overnight, because the legal basis for Weigh In Motion is still largely lacking," Vospernig adds.

High-quality, reliable data

The planned reconstruction of the bridge was also delayed due to unresolved land rights issues: construction is scheduled to start in December 2021. This means that Kistler's WIM system has several important roles to play: reliable classification of vehicles and identification of overloads have now become possible, and changes in the bridge's condition can also be determined more accurately in combination with measurements of the supporting structure. "The system is efficient to use, and CSV export makes it simple to merge the data with the supporting structure measurements. In this case, the result was an almost linear correlation between the influencing factors and the effects on the supporting structure. Thanks to the high quality and reliability of the bridge monitoring data, this method of long-term measurement could even be applied to other bridges," Vospernig notes. 

Despite some fierce resistance from haulage companies and transporters, the local authorities were ultimately successful in preventing virtually any further overloading of the bridge. Later on, REVOTEC installed a camera system with vehicle numberplate recognition (VNR) in order to extend the "long arm of the law". The WIM measurements were backed up by spot measurements using a mobile vehicle weighing system on behalf of ÖBB and in cooperation with the authorities.

Michael Vospernig is highly satisfied with the results, and he can envisage continuing to use KiTraffic Statistics and perhaps other solutions from Kistler in the future. Applications could include projects by ASFINAG (the Austrian Motorway and Expressway Financing Corporation) focusing on traffic data acquisition and bridge monitoring: "KiTraffic Statistics delivers highly reliable data – the system is simple to set up, and its cost-to-benefit ratio is good. Users can do a lot of the work themselves with the help of the instructions; good contact with Kistler Austria and personal on-site support with the setup were extra benefits."

Generally speaking, the deployment of WIM technology harbors vast potential for remedying the precarious condition of many bridges in and beyond the DACH region thanks to planning and maintenance based on load data. Instead of making (very conservative) assumptions that force operators to restrict access to bridges or close them in case of doubt, accurately targeted action can now be taken to improve and upgrade them on the basis of real traffic loads. Michael Vospernig agrees with this view, and he goes even further in his final remarks: "Demand for data-based systems is on the increase. Individual solutions continue to dominate the market at present, but there could be a trend towards modular systems and even turnkey solutions in the medium term. At some point in the future, automated bridge monitoring systems to measure supporting structures and axle loads are likely to become part of the infrastructure: they would allow real-time condition monitoring and predictive maintenance, based on degradation lines and at varying intervals."

Daimler Buses relies on MaDaM and jBEAM to further develop of its electric city buses.
On the road to success with IEPE and MEMS accelerometers for the ISTAR research aircraft – on the ground and in the air.
KiTraffic Statistics delivers precise WIM data for a railway bridge in central Austria
Advanced fastener testing with ANALYSE systems for reliable zink flake coatings in the automotive and wind turbine industries
How Yuchai achieves more precision, transparency and resource efficiency for its production of engines conform to China VI
A high precision measuring chain with dynamometer, laboratory charge amplifier and software enables objective comparison tests.
SRA: Find the best spot and the ideal sensor layout for direct enforcement of overloaded vehicles.
At Estudio de la Pisada in Valencia, a 3D force plate helps podiatry experts to develop treatments and orthoses for patients and athletes.
Two IEPE accelerometers deliver key data for propulsion validation and optimization of flight characteristics even in the stratosphere
Capturing micro-vibrations with a dynamometer leads to improved satellite technology
Zero defect despite high volumes: this is the way quality assurance with Kistler test automation systems works for zinc die casting parts
A digitally driven brake force measurement system makes the life of service technicians for train maintenance much easier
Inside "The Atmosphere" at MARIN, 100 of our pressure sensors capture wave impacts under varying environmental conditions
How MAN Energy Solutions is using sensors from Kistler to make its gas turbines fit for the future
Measurement technology dedicated to the discipline and biomechanics of pole vault enables high performances
How does a digital measuring chain for piezoelectric sensors work as part of a complex vehicle test stand?
Convincing test results: The Ohio Department of Transportation goes on to apply Lineas from Kistler for traffic monitoring.
Precision is the key to top performance: how measurement technology from Kistler supports the development team at EMUGE-FRANKEN
Quality assurance solutions by Kistler like ComoNeo ensure highest accuracy at TSP Precision Tooling in Shanghai.
Kistler supports Ceratizit in the development of HDT. This enables complex geometries to be produced with just one tool.
Process monitoring systems and cavity pressure sensors from Kistler help to reduce the amount of scrap drastically
How measurement technology from Kistler contributes toward boosting high-end powertools' quality
How the ANALYSE system from Kistler is enhancing safety and transparency in the field of fastening technology
Turkey opts for weight enforcement with WIM technology from Kistler
For the next manned flight to the moon: safety that can be measured
Segregation of good and bad parts every 1.5 seconds: process monitoring with Kistler enables high quality for over 5 million parts per year.
In order to achieve excellent quality for its components and medical devices, Tessy Plastics chose sensors and solutions from Kistler.
A renowned manufacturer of electrical appliances trusts testing and sorting systems by Vester to improve its quality.
NFL's Jaguars boost their fitness levels with Kistler.
By using process monitoring from Kistler, not only the assembly of electric fuses is validated, but even the function of the sensors itself.
How to determine the fitness level of an athlete efficiently? A practical report on the Quattro Jump force plate system from Kistler.
Thanks to precise Weigh in Motion technology from Kistler, Hungary's roads are sustainably protected against overloaded vehicles.
Bang&Clean relies on Kistler's precise measurement of ignition processes and pressure wave propagation
Sartorius applies the process monitoring system ComoNeo from Kistler and thereby increases the process quality during injection molding
The Dortmund Technical University tests the new MicroDyn 9109AA cutting force dynamometer from Kistler and breaks new ground for developing its micromachining processes.
The ZF company operates a software-controlled Kistler fastener test bench with an integrated vibration unit.
BIG Daishowa, headquartered in Osaka, Japan, is one of the leading producers of tool holders for the machining industry. Each year the company produces over half a million collet chucks. Their products are developed using, among other resources, Kistler’s cutting force measuring device.
Enhanced quality and efficiency in mobile crane manufacture – thanks to the test stand for torque tools by Kistler
The world’s largest provider of rail transport technology relies on Kistler’s measurement expertise. Thanks to the only crash wall of its kind in the world, the impact forces of the trains and their components can be precisely measured and analyzed.
In the development of cooling lubricants, Blaser Swisslube relies on Kistler's measurement expertise.
Applus IDIADA relies on DTI in-dummy technology from Kistler for Test Device for Human Occupant Restraint (THOR).
Road safety is a central topic in vehicle development. Through accurate measurements, Kistler helps increase the chance of survival in crashes.
Kistler makes progress in vehicle development possible
Kistler Sensor Correvit® SFII measures world record
Kistler sensors deliver a maximum in data quality under any conditions.
Kistler pressure sensors enabled the Rosetta space probe to fly for 6.4 billion kilometers.
Since the end of 2015 FC Basel is using Kistler force plates to reduce the dropout of young talents.
Kistler makes the difference in the crucial sports moments with its Performance Analysis System for Swimming.
Determination of Pump Efficiency with Kistler KiTorq Measuring Flange System
Piezoelectric Measurements with CompactRIO™
Measurement Solutions for Automotive Test Systems
Quality Assurance in the Automotive Industry
How Brose improves the quality of its two-component production and automatically separates defective parts
The Kistler Group pursues a growth policy that is both ambitious and sustainable – and strategic acquisitions are one of its core elements. ‘Strategic’ means that Kistler deliberately selects companies which can achieve more together with Kistler than they ever could by continuing alone. The takeover of Dr. Staiger Mohilo & Co. GmbH in 2006 enabled Kistler to grow jointly with the acquired company...
After a ten-year voyage, the Rosetta space probe's Philae landing module finally touched down on the surface of comet ‘Chury’.
HEWI and its Customers Benefit from Cavity Pressure Technology
End-to-end process monitoring for critical medical moldings
Cavity pressure measurement eliminates short shots at Fischer GmbH & Co KG of Sinsheim/Germany
Max 25 MB