MicroDyn

Multicomponent dynamometer up to 500 N, cover plate 30x30 mm

Multicomponent dynamometer for measuring the three orthogonal components of a force and the torque \(M_z \). The very low threshold and the high sensitivity allow even the smallest forces to be measured. With a natural frequency higher than 15 kHz in all three axes, highly dynamic forces can be recorded with extremely high accuracy.

- Very compact design
- Patented sensor arrangement
- High sensitivity and natural frequency
- Reduced influence of temperature through compensation
- Cover plate made of hard-anodized lightweight material
- For cutting force measurements in micro-machining
- For general multicomponent force measurements

Description
The dynamometer consists of four, 3-component force sensors which are mounted under high pretension between the cover plate and the four lateral assembly elements. Thanks to this special mounting of the sensors, temperature influences can be partially compensated for and the influence of the temperature thereby minimized. The force measurement of the sensors is based on the piezoelectric principle. The application of a force causes the crystal rings installed in the sensor (one crystal ring for each of the force components that is to be measured) to release a charge that is proportional to this force. The charge signals of the four installed force sensors are internally connected and output by a 9-pin flange socket. In addition to the direct measurement of the three force components, an indirect measurement of the torque \(M_z \) is possible through an appropriate calculation. The sensors are mounted ground-isolated (dry state). Ground-loop problems can thereby be largely avoided.

The dynamometer is corrosion resistant and protected against the penetration of cooling lubricant. Together with the 8-pin connecting cable Type 1677A5, Type 1677AQ02 or Type 1679A5, the dynamometer is protected against the penetration of dust and liquids according to degree of protection IP67.

Application examples
- Multicomponent force measurement of extremely small and highly dynamic forces
- Cutting force measurement in
 - precision machining
 - micromachining
 - ultra-high precision machining of brittle materials

Technical data

<table>
<thead>
<tr>
<th>Description</th>
<th>Measuring range (centrical), (F_x, F_y, F_z) N</th>
<th>Measuring range when components act simultaneously (centrical)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-500 \ldots 500)</td>
<td>(-250 \ldots 250)</td>
</tr>
<tr>
<td></td>
<td>(M_z) N·m</td>
<td>(M_z) N·m</td>
</tr>
<tr>
<td></td>
<td>(-50 \ldots 50)</td>
<td>(-30 \ldots 30)</td>
</tr>
<tr>
<td>Calibrated measuring range</td>
<td>(100%) (F_x, F_y, F_z) N</td>
<td>(0 \ldots 500)</td>
</tr>
<tr>
<td></td>
<td>(10%) (F_x, F_y, F_z) N</td>
<td>(0 \ldots 50)</td>
</tr>
<tr>
<td></td>
<td>(2%) (F_x, F_y, F_z) N</td>
<td>(0 \ldots 10)</td>
</tr>
<tr>
<td>Overload (centrical) (F_x, F_y, F_z) N</td>
<td>(M_x, M_y) N·m</td>
<td>(M_z) N·m</td>
</tr>
<tr>
<td></td>
<td>(-1000/1000)</td>
<td>(-30/30)</td>
</tr>
<tr>
<td></td>
<td>(-60/60)</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>(N)</td>
<td>(<0.002)</td>
</tr>
<tr>
<td>Average sensitivity (F_x, F_y) pC/N</td>
<td>(F_z) pC/N</td>
<td>(-12.5)</td>
</tr>
<tr>
<td>Linearity</td>
<td>Measuring range (10% \ldots 100%) %/FSO</td>
<td>(\leq 0.5)</td>
</tr>
<tr>
<td></td>
<td>Measuring range (0% \ldots <10%) %/FSO</td>
<td>(\leq 1.0)</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Measuring range (10% \ldots 100%) %/FSO</td>
<td>(\leq 0.5)</td>
</tr>
<tr>
<td></td>
<td>Measuring range (0% \ldots <10%) %/FSO</td>
<td>(\leq 1.0)</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>(F_x \Rightarrow F_y) %</td>
<td>(\leq 4)</td>
</tr>
<tr>
<td></td>
<td>(F_x \Rightarrow F_z) %</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td></td>
<td>(F_y \Rightarrow F_x) %</td>
<td>(\leq 4)</td>
</tr>
<tr>
<td></td>
<td>(F_y \Rightarrow F_z) %</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td></td>
<td>(F_z \Rightarrow F_x) %</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td></td>
<td>(F_z \Rightarrow F_y) %</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td>Natural frequency (without additional mass)</td>
<td>(f_x) kHz</td>
<td>(>15)</td>
</tr>
<tr>
<td></td>
<td>(f_y) kHz</td>
<td>(>15)</td>
</tr>
<tr>
<td></td>
<td>(f_z) kHz</td>
<td>(>15)</td>
</tr>
<tr>
<td>Operating temperature range ({\text{°C}})</td>
<td>(-20 \ldots 70)</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>(X_{x}, X_{y}, X_{z}) pF</td>
<td>(=60)</td>
</tr>
<tr>
<td></td>
<td>(X_{x0}, X_{y1}, X_{z1}) pF</td>
<td>(=120)</td>
</tr>
<tr>
<td></td>
<td>(Z) pF</td>
<td>(=240)</td>
</tr>
<tr>
<td>Insulation resistance (20 °C) (\Omega)</td>
<td>(\geq 10^7)</td>
<td></td>
</tr>
<tr>
<td>Ground isolation (dry state) (\Omega)</td>
<td>(\geq 10^7)</td>
<td></td>
</tr>
<tr>
<td>Degree of protection EN60529</td>
<td>–</td>
<td>IP67 (^1)</td>
</tr>
<tr>
<td>Weight</td>
<td>Dynamometer kg</td>
<td>1.040</td>
</tr>
<tr>
<td></td>
<td>Cover plate kg</td>
<td>0.050</td>
</tr>
<tr>
<td>Mounting surface mm</td>
<td>30x30</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) With connecting cable Types 1677A5, 1677AQ02, 1679A5

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.
MicroDyn – multicomponent dynamometer up to 500 N, cover plate 30x30 mm, Type 9109AA

Dimensions

Fig. 1: Dimension of dynamometer Type 9109AA

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

Kistler Group products are protected by various intellectual property rights. For more details visit: www.kistler.com

© 2018 Kistler Group, Eulachstrasse 22, 8408 Winterthur, Switzerland
Tel. +41 52 224 11 11, info@kistler.com, www.kistler.com
Mounting
The dynamometer can be mounted with eight M4 screws to any face-ground, clean mounting surface, such as on a machine tool table. Mounting on a magnetic plate is made possible by means of a supplied steel base plate. It must be noted that uneven contact surfaces may cause internal distortions, which could place additional heavy stresses on the individual links and increase crosstalk.

M4 tapped blind holes, Ø3.4 through holes as well as 4.5H7 fittings are provided in the cover plate for mounting the force-introducing components such as workpieces or work holders. The contact surfaces of the force-introducing parts must be surface ground to achieve good mechanical coupling to the cover plate.

Measuring signal processing
The sensor outputs the charges of the individual sensors via a 9-pin connector with the following pin assignment.

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Output signals Type 1677A/1679A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>F_x'1</td>
</tr>
<tr>
<td>3</td>
<td>F_x'2 + 4</td>
</tr>
<tr>
<td>4</td>
<td>F_x'3</td>
</tr>
<tr>
<td>5</td>
<td>F_y'1 + 3</td>
</tr>
<tr>
<td>6</td>
<td>F_y'2</td>
</tr>
<tr>
<td>7</td>
<td>F_y'4</td>
</tr>
<tr>
<td>8</td>
<td>F_z'1 + 2 + 3 + 4</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
</tr>
</tbody>
</table>

To convert the charges output by the sensor to a voltage that can be used by data acquisition devices, multi-channel charge amplifiers are used (e.g., Type 5080A or Type 5167A81). The measurement value of the individual channels is proportional to the applied force.

Data acquisition
If a high-end laboratory charge amplifier Type 5080A is used, Kistler offers a universal and simple to operate package with DAQ system Type 5697A1 consisting of hardware for data acquisition as well as the DynoWare software. For details, see data sheet doc. no. 5697A_000-745.

If charge amplifier Type 5167A81 is used, this is available as model Type 5167A81DK with digitalization and the Dynoware software in the package. This eliminates the need for other external data acquisition, thereby reducing wiring work considerably.

Data analysis
To calculate the three orthogonal force components and the torque Mz from the output signals, the following equations are used:

\[
\begin{align*}
F_x &= F_{x1} + F_{x2} + F_{x3} = F_{x1}' + F_{x2}' + F_{x3}' - F_{x3}' \\
F_y &= F_{y2} + F_{y1} + F_{y4} = F_{y2}' + F_{y1}' + F_{y4}' - F_{y4}' \\
F_z &= F_{z1} + F_{z2} + F_{z3} + F_{z4} = F_{z1}' + F_{z2}' + F_{z3}' + F_{z4}' - F_{z4}' \\
M_z &= (F_{x1} - F_{y2} + F_{x3} - F_{y4}) \cdot a \cdot k_{Mz} = (F_{x1}' - F_{y2}' - F_{x3}' - F_{y4}') \cdot a \cdot k_{Mz}
\end{align*}
\]

When using the Dynoware software, these calculations rules are stored in a template, eliminating the need for additional programming when setting up the system and thereby avoiding errors.
MicroDyn – multicomponent dynamometer up to 500 N, cover plate 30x30 mm, Type 9109AA

Measuring system for 4-component measurement F_x, F_y, F_z, M_z

Dynamometer
Type 9109AA

Connecting cable
Type 1677A5
Type 1677AQ02
Type 1679A5

Multichannel charge amplifier
Type 5080Axxx8x004

Output ±10 V
Ch1 F_x 1
Ch2 F_y 2+4
Ch3 F_z 3
Ch4 F_z 1+3
Ch5 F_y 2
Ch6 F_y 4
Ch7 F_z 2+3+4
Ch8 NC

Fig. 4: Measuring system for 4-component measurement F_x, F_y, F_z, M_z

Typical Measuring Chain with DAQ System Type 5697A1

Dynamometer
Type 9109A

Connecting cable
Type 1677A5

Ch1 F_x 1
Ch2 F_y 2+4
Ch3 F_z 3
Ch4 F_z 1+3
Ch5 F_y 2
Ch6 F_y 4
Ch7 F_z 2+3+4
Ch8 NC

Notebook (customer) with DynoWare

Ordering code
- Multicomponent dynamometer up to 500 N, cover plate 30x30 mm
Type/part. no.
9109AA

Included accessories:
- Mounting screws M4x25 (8 pieces)
- Steel base plate for magnetic mounting
Type/part. no.
65012704
55174784

Optional accessories
- Connecting cable, 8-wire with metal shield sheath
- Connecting cable, 8-wire with flexible sheath
- Connecting cable, 8-wire with metal shield sheath and angle connector
Type/part. no.
1677A5
1677AQ02
1679A5

Typical Measuring Chain with DAQ System Type 5697A1

Dynamometer
High resistant cable
Type 9109A
Type 1677A5

Charge amplifier
Type 5080A

Connecting cable
Type 1700A111A2
Type 1200A27

DAQ system
Type 5697A1