

Accelerometer

Triaxial, Gas-damped

Type M1203A... is a small, compact triaxial device designed for vehicle impact and road testing.

- Measuring range ±500 ... 1 000 g
- Excitation 2 ... 10 VDC
- Low transverse sensitivity
- · Advanced MEMS element
- Gas-damped
- Mechanical overload stops

Description

The mechanical overload stops of the sensor provide high shock protection in rugged applications. Featuring ranges from $\pm 500 \dots 1000 \, g$ and a shock limit up to 5 000 g. This sensor is easily mounted in hard to reach places on vehicles under test.

Application

The sensor is designed for crash testing, vehicle testing, impact testing, off-road testing, transportation testing.

Type M1203A...

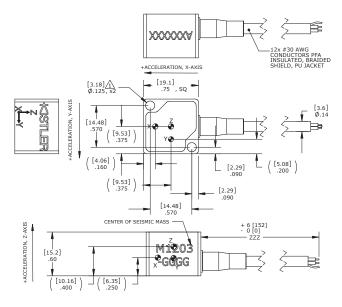


Fig. 1: Dimensions and center of seismic mass

Technical Data

Dynamic

•			
Measuring range	g	±500	±1 000
Sensitivity ¹⁾ @ 10 VDC excitation	mV/g	0,40	0,15
Frequency response			
±5 %	Hz	0 1 200	0 1 500
Resonant frequency	Hz	6 000	7 000
Damping ratio, typ.		0,3	0,1
Amplitude non-linearity, of reading	%FSO	±1	±1
Transverse sensitivity	%	<3	<3
Shock limit	g	5 000	5 000

Technical Data (Continuation)

Flectrical

Liectificai		
Zero acceleration output	mV	<±40
Excitation	VDC	2 10
Input resistance	Ω	2 400 6 000
Output resistance	Ω	2 400 6 000
Insulation resistance, @ 50 VDC	ΜΩ	>100
Ground isolation		isolated from
		mounting surface

Environmental

Thermal zero shift,		
from 0 50 °C	%FSO/°C	±0,05
Thermal sensitivity shift,		
from 0 50 °C	%/°C	±0,2
Operating temperature range	°C	-20 85
Storage temperature range	°C	-20 85
Humidity, epoxy sealed		IP65

Physical

	anodized aluminium		
1	12x#30 AWG conductors		
	PFA insulated		
	braided shield		
	PU jacket		
	2x#4 or M3 socket		
	head cap screws		
	torque 8 lb-in (1 N·m)		
grams	20		

All values are typical at +24 °C, 100 Hz and 10 VDC excitation unless otherwise stated.

 $^{^{\}hspace{-0.5em} 1)}$ Output is ratiometric to excitation voltage

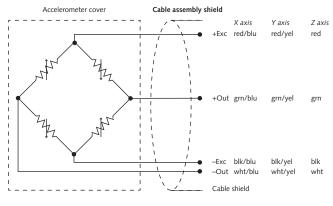
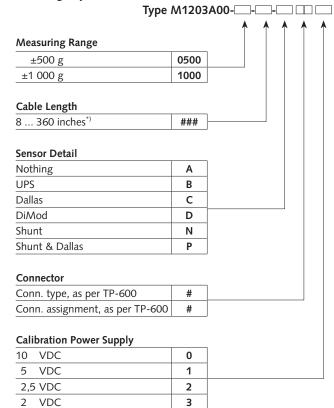



Fig. 2: Schematic diagram

Ordering Key

^{*) 1} inch = 25,4 mm