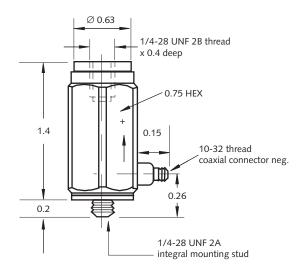
Quartz

Vibration Standard

Type 8076K is a high precision laboratory accelerometer used primarily as a transfer standard for back-to-back calibrations.

- High impedance charge mode
- · Quartz accuracy and stability
- Rugged design
- · Low base strain sensitivity, and mass loading
- · Ground isolated

Description


The Type 8076K accelerometer is Kistler's most accurate and repeatable laboratory vibration calibration transfer standard. It features low base strain and mass loading sensitivities, a rugged stainless steel housing, ground isolation and an integral mounting stud. A beryllium mounting base, lapped optically flat, provides optimum coupling between the 8076K and the test unit. Contained within the housing is a piezoelectric assembly consisting of a seismic mass, preloaded to a quartz element stack. The force acting on the quartz measuring element is proportional to the acceleration in accordance with Newton's Law: F=ma. This element in turn, gives an electrical charge signal proportional to the force and, therefore, to the acceleration. The charge signal is conducted through a low noise coaxial cable, such as the 1631 series, then converted and amplified to a proportional output voltage in a charge amplifier (such as Type 5010). Direct measurements can be made with a 5022 calibration charge amplifier.

Application

Type 8076K is a high precision laboratory accelerometer used primarily as a transfer standard for back-to-back calibrations.

Type 8076K

CE Compliant Information

Because high impedance, charge mode accelerometers contain no electronics, CE certification to the EMC Directive is not appropriate. When a high impedance accelerometer is used with a CE certified signal conditioner (i.e., charge amplifier 5022), it is said that this system is CE compliant.

Technical Data

Туре	Units	8076K
Acceleration Range	g	±1000
Acceleration Limit	gpk	±2000
Sensitivity*	pC/g	1.0 ± 0.10
Resonant Frequency mounted, nom.	kHz	33
Frequency Response ±4%	Hz	0.55000
Amplitude Non-Linearity	%FSO	± 0.5
Insulation Resistance @ R.T	Ω	≥10¹³
Capacitance	pF	100
Transverse Sensitivity*	%	≤2
Environmental:		
Base Strain Sensitivity @250µ in/in	g	0.0005
Electromagnetic Susceptibility	g/gauss	0.0005
Shock Limit (1ms pulse)	gpk	1000
Temperature Coefficient of Sensitivity	%/°F	0.01
Temperature Range Operating	°F	<i>-</i> 5 150
Temperature Range Storage	°F	-50 200
Mounting Error:		
Test Transducer 12 24	In-lb	none
To exciter 18 30	In-lb	none
Construction:		
Sensing Element	type	quartz/
		compression
Housing/Base	material	stainless steel
Sealing - Housing/Connector	type	ероху
Connector	type	10-32 neg.
Ground Isolation min.	MΩ	10
Weight	grams	80

^{*} at 100 Hz, R.T. 10 grms

 $1 g = 9.80665 \text{ m/s}^2$, 1 inch = 25.4 mm, 1 gram = 0.03527 oz, 1 lbf-in = 0.1129 Nm

Mounting

The calibration standard is attached to the vibration source by means of the integral mounting stud. Mounting studs and a stud adaptor afford extreme flexibility for back-to-back mounting between the calibration standard and test accelerometer configurations.

Accessories Included	Туре
• (2) mounting studs, 1/4-28 to	8410
10-32 thread	
• (2) mounting studs ,1/4-28 thread	8412
• (1) thread converter, 10-32 internal	8414
to 1/4-28 external thread	
 thread converter wrench 	8552

Optional Accessories	Type
 mounting base with 1/4-28 internal 	8442

Ordering Key

Measuring Range		8076 🗀
±1000g, Vibration Standard	K	
= 10006/ 1151411011 514114414		